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Electrostatic attraction of coupled Wigner crystals: Finite temperature effects
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In this paper we present a unified physical picture for the electrostatic attraction between two coupled planar
Wigner crystals at finite temperature. This model may facilitate our conceptual understanding of counterion-
mediated attractions between~highly! similarly charged planes. By adopting an elastic theory, we show that the
total attractive force between them can be~approximately! decomposed into a short-ranged and a long-ranged
component. They are evaluated below the melting temperature of the Wigner crystals. In particular, we analyze
the temperature dependence of the short-ranged attraction, arising from ground-state configuration, and we
argue that thermal fluctuations may drastically reduce its strength. Also, the long-range force agrees exactly
with that based on the charge-fluctuation approach. Furthermore, we take quantum contributions to the long-
ranged~fluctuation-induced! attraction into account and show how the fractional power law, which scales as
d27/2 for large interplanar distanced at zero temperature, crosses over to the classical regimed23 via an
intermediate regime ofd22.
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I. INTRODUCTION

Electrostatic interactions play an important role in sy
tems of charged macroions in aqueous solutions of neu
izing counterions@1#. The macroions may be charged mem
branes, stiff polyelectrolytes such as DNA, or charg
colloidal particles. Recently, there has been a great intere
understanding the attractive force arising from correlatio
between highly charged macroions as evidenced in exp
ments@2# and in simulations@3#. This attraction is not con-
tained in the standard Poisson-Boltzmann~PB! treatment,
even for an idealized system of two highly charged pla
surfaces. Indeed, it has been proven recently that PB th
predicts only repulsions between two likely charged obje
@4#. Recall that the PB solution@1# for a single charged sur
face with charge densityen—where e is the elementary
charge andn the areal density—immersed in a solutio
of neutralizing counterions of valenceZ, predicts a length
scale lG51/(2p l BZn) @where l B[e2/ekBT'7 Å is the
Bjerrum length below which electrostatics dominates
thermal energy in an aqueous solution of dielectric cons
e580 (H2O), kB is the Boltzmann constant, andT is the
temperature#. Physically, this Gouy-Chapman lengthlG de-
fines a sheath near the charged surface within which mo
the counterions are confined@5#. For a moderately charge
surface ofn;1/100 Å22, lG is of the order of a few ang
stroms, and for highly charged surfaces and multival
counterionsZ.1, we havelG, l B , signaling the break-
down of PB theory. In this limit, fluctuations and correlatio
about the mean-field potential become so large that the s
tion to the PB equation no longer provides a reasonable
proximation@6#.

To account for the attraction arising from correlation
two distinct approaches have been proposed@7,8#. The first
approach, based on charge fluctuation, treats the ‘‘c
1063-651X/2001/63~5!/051604~9!/$20.00 63 0516
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densed’’ counterion~in-plane! fluctuations in the Gaussia
approximation. This theory predicts a long-ranged attract
which scales with the interplaner distance asd23 and van-
ishes asT→0 @7#. Note that this long-ranged force belong
to the general class of fluctuation-induced forces@9#. In the
other approach based on ‘‘structural’’ correlations propos
by Rouzina and Bloomfield@8#, the attraction comes from
the ground-state configuration of the condensed counteri
Indeed, at sufficiently low temperature, the condensed co
terions crystallize on the charged surface to form a tw
dimensional~2D! Wigner crystal. When brought togethe
the counterions of two Wigner crystals correlate themsel
to minimize the electrostatic energy~see Fig. 1!. The pres-
sure between them can easily be calculated at zero temp
ture @8,10#

PSR~d!52
]
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2
~en!2

e E d2r
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e2G0d ~1!

FIG. 1. A schematic picture of two staggered Wigner cryst
formed by the ‘‘condensed’’ counterions at very low temperatur
©2001 The American Physical Society04-1
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for large d, whereRl are the lattice sites,c is the relative
displacement vector between two lattices of the differ
plane, G0[4p/(A3a) is the magnitude of the firs

reciprocal-lattice vector, anda[A2/(A3n) is the lattice
constant. Hence, these staggered Wigner crystals attract
other via a short-range force that decays exponentially w
the lattice constant as the characteristic length scale. Cle
this short-ranged force is strongest at zero temperature
thermal fluctuations diminish this attraction.

Although the physical origin of the attraction is clear
each approach, the relationship between them remains s
what obscure, and this has generated a debate in the liter
@11#. Therefore, it is desirable to formulate a unified a
proach that captures the physics of both mechanisms
addresses some important issues, for example, the tem
ture dependence of the short-ranged force, computed on
zero temperature in Eq.~1!. It is the goal of this paper to
formulate such an approach. Since at low temperature
counterion distribution is essentially two dimensional, w
consider a model system composed of two uniform
charged planes a distanced apart, each having a charge de
sity en. Confined on the surfaces are negative pointlike m
bile charges of magnitudee. In order to understand correla
tion effects that are not captured by PB theory, we assu
that the charges form a system of interacting Wigner crys
and develop a detailed physical picture of the electrost
interaction between them at finite temperatures but be
their melting temperature@12#.

In particular, we compute the electrostatic attraction
tween the two layers by explicitly taking into account bo
correlated fluctuationsand ‘‘structural’’ correlations. ~By
structural correlations, we mean the residual ground-sta
spatial correlations that remain at finite temperature.! By
adopting an elasticity theory, the total force of the syst
can be decomposed~approximately! into a short-ranged
component arising from structural correlations and a lo
ranged component from correlated fluctuations. They are
culated in Sec. II within the harmonic approximation usi
Boltzmann statistics~classical!, which is valid below the
melting temperature of the Wigner crystals. We show t
the short-ranged force persists at finite temperature, and
obtain a simple expression—see Eq.~25!—which reduces to
the zero-temperature result in Eq.~1! @8,10#. The interesting
effect of thermal fluctuations is to reduce therange of this
force and thus the effect is not negligible even below
melting temperature of the Wigner crystals. For the lon
ranged force, this ‘‘elastic’’ calculation—see Eq.~21!—finds
exactly the same result, even including the prefactor, as
Debye-Hückel ~Gaussian! approximation@7#. This is to be
expected since the long-wavelength density fluctuatio
which give rise to the long-ranged force, are independen
the local Wigner crystal-like ordering. Thus, an importa
insight gained here is that what is previously thought of
disparate mechanisms for the attractions—the short-ran
attraction~ground state! for low temperature and the long
ranged attraction~charge fluctuation! for high temperature—
are both captured within a single framework.

In addition, at zero temperature there must also be a lo
ranged attraction derived from thequantumfluctuations of
05160
t

ach
h
ly,
nd

e-
ure
-
nd
ra-
at

he

-

e
ls
ic
w

-

-
l-

t
e

e
-

e

s,
of
t
s
ed

g-

the plasmons@10#. This is the low-temperature counterpart
the long-ranged force arising from charge fluctuation at fin
temperature. While this low-temperature result only bear
conceptual interest for macroions, it may have real releva
in the larger context of fluctuation-induced interactions
general, and in semiconductor bilayers in particular@13#. In-
terestingly, although similar to the Casimir effect, arisi
from zero-point fluctuations atT50, the fluctuation-induced
force associated with two-coupled Wigner crystals is fun
mentally different. The Casimir effect pertains to two me
slabs separated by a gap of distanced, outside of which there
is no electric field; this force scalesd24 at T50 @14#. For the
case of coupled Wigner crystals, zero-point fluctuations
the plasmons lead to a characteristically different for
which decays with a novel power law:d27/2 @10#. Hence,
this long-ranged attractive force dominates the ground-s
short-ranged attraction in Eq.~1! for larged. Furthermore, it
is of fundamental interest to consider finite-temperature
fects as well. This is done in Sec. III, where we first rec
the phonon spectrum of the coupled Wigner crystals, iden
the plasmon modes, which characterize the density fluc
tions of the system, and compute the attractive force aris
from fluctuations using explicitly the Bose-Einstein distrib
tion, which appropriately captures quantum effects at v
low temperatures and thermal effects at higher temperat
for phonons in general and for plasmons in this particu
case. Our result in the classical regime, which scalesd23,
agrees exactly including the prefactor with that based on
Debye-Hückel theory and ‘‘elasticity’’ theory in Sec. II.
Thus, we have provided an interesting but different persp
tive on the same problem and explicitly show how thed27/2

force law at zero temperature crosses over to thed23 law at
high temperature via an intermediated22 regime.

Another point worth mentioning concerns the ordering
2D solids which exhibit quasi-long-range-order~QLRO!
@15#. It is well known that a true long-range order is impo
sible for 2D systems with continuous symmetries. For a
solid, which may be described by continuum elasticity theo
with nonzero long-wavelength elastic constants, the Fou
components of the density functionn(r )5(GnG(r )eiG•r av-
erage~thermally! out to zero for a nonzero reciprocal-lattic
vector G, i.e., ^nG(r )&5^eiG•u(r )&50, whereu(r ) are the
displacements of the particles from their equilibrium po
tions, while the correlation function decays algebraically
zero: ^nG(r )nG* (0)&;r 2hG(T) with hG(T)5kBTG2(3m
1l)/4pm(2m1l), wherem and l are Lame´ elastic con-
stants. This slow power-law decay of the correlation funct
is very different from the exponential decay one would e
pect in a liquid. Hence the term QLRO. For a single 2
Wigner crystal, QLRO implies that the thermal average
the electrostatic potential at a distanced above the plane is
zero at any nonzero temperature, in contrast to a perfe
ordered lattice (T50) where the electrostatic potential d
cays exponentially withd. This may lead to the conclusio
that at finite temperatures the short-ranged force betw
two-coupled Wigner crystals should likewise be zero. As
show below, this is not the case because the susceptib
which measures the linear response of a 2D lattice to
4-2
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ELECTROSTATIC ATTRACTION OF COUPLED WIGNER . . . PHYSICAL REVIEW E 63 051604
external potential, nevertheless diverges at the recipro
lattice vectors as in three-dimensional~3D! solids @16#.

However, in real biological systems, the ordering of t
counterions may be far from a Wigner crystal. Neverthele
it is important to understand counterion-mediated attracti
between two highly charged surfaces in this Wigner-crys
limit, since it does provide usefulqualitativeinsights into the
nature of this problem, and moreover, the present form
tion may serve as a starting point for a more sophistica
theory which includes the melting of coupled Wigner cry
tals.

This paper is organized as follows. In Sec. II we derive
effective Hamiltonian that describes two interacting plan
Wigner crystals starting from the zero-temperature grou
state. The total pressure is then decomposed into a lo
ranged and a short-ranged component, which are evalu
in Secs. II A and II B, respectively, and a detailed discuss
of our results is presented in Sec. II C. In Sec. III we pres
an argument for a long-ranged attractive force arising fr
the zero-point fluctuations at zero temperature. In addit
we use the Bose-Einstein distribution to calculate the att
tive long-ranged pressure in the quantum regimes.

II. EFFECTIVE HAMILTONIAN AND PRESSURE

We start with the Hamiltonian for two interacting Wigne
crystals:H5H01Hint . Here,H0 is the elastic Hamiltonian
for two isolated Wigner crystals@17#

bH05
1

2 (
i
E d2q

~2p!2
Pab~q!ua

( i )~q!ub
( i )~2q!, ~2!

where b215kBT, u( i )(q) is the Fourier transform of the
in-plane displacement field of the charges in thei th layer
( i 5A or B), Pab(q)5@(2p l Bn2/q)Pab

L 1mPab
T #q2 is the

dynamical matrix,m'0.245n3/2l B is the shear modulus@18#
in units of kBT, and Pab

L 5qaqb /q2 and Pab
T 5dab

2qaqb /q2 are longitudinal and transverse projection ope
tor, respectively. Here, Greek indices indicate Cartes
components.Hint is the electrostatic interaction between t
two layers,

bHint5 l BE d2xd2x8
@rA~x!2n#@rB~x8!2n#

A~x2x8!21d2
, ~3!

wherer i(x) is the number density of charges in thei th layer.
In order to capture the long-wavelength coupling as well
discrete lattice effects which are essential for our discuss
on the short-ranged force, we employ a method, simila
that in Ref. @19#, which allows us to derive an effectiv
Hamiltonian that is valid in the elastic regime where t
density fluctuations are slowly varying in space, i.
“•u( i )(x)!1, but uuA(x)2uB(x)u need not be small com
pared to the lattice constanta.

Let us introduce a slowly varying field for each layer,

fa
( i )~x!5xa2ua

( i )@fW ( i )~x!#, ~4!
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where the displacement fieldu( i )(x) is defined in such a way
that it has no Fourier components outside of the Brillou
zone~BZ!. Then, the densityr i(x) can be written as

r i~x!5(
l

d2@Rl2fW ( i )~x!#det@]afb
( i )~x!#, ~5!

whereRl are the equilibrium positions of the charges, i.
the underlying lattice sites. Using the Fourier representa
of the d function and solvingfa

( i )(x) iteratively in terms of
the displacement field, we obtain a decomposition of
density for thei th layer into slowly and a rapidly spatially
varying pieces

r i~x!2n>2n“•u( i )~x!1 (
GÞ0

neiG•[x1u( i )(x)] , ~6!

where G is a reciprocal-lattice vector. Note that we ha
neglected terms that are products of the slowly and the
idly varying terms. Physically, the first term represents d
sity fluctuations for wavelengths greater than the lattice c
stant, and the second term represents the underlying lat
modified by thermal fluctuations. Using the density deco
position ~6!, Hint may be written as

bHint5E d2q

~2p!2

2p l B

q
e2qdE d2xE d2x8eiq•(x2x8)

3S n“•uA~x!2 (
GÞ0

neiG•[x1uA(x)] D
3S n“•uB~x8!2 (

G8Þ0

neiG8•[x81c1uB(x8)] D ,

~7!

wherec is the relative displacement vector between two l
tices of the different plane and we have used the fact
1/Ax21d25*@d2q/(2p)2#eiq•x(2p/q)e2qd. Again neglect-
ing the products of slowly and rapidly varying terms, whic
give vanishingly small contributions when integrating ov
all space,Hint separates into two pieces: a long-waveleng
term

bH int
L 5E d2q

~2p!2

2p l Bn2

q
e2qdqaqbua

A~q!ub
B~2q! ~8!

and a short-wavelength term

bH int
S 51 (

GÞ0
(

G8Þ0
E d2q

~2p!2

2p l Bn2

q
e2qd

3E d2xE d2x8eiq•(x2x8)eiG•[x1uA(x)]

3eiG8•[x81c1uB(x8)] . ~9!
4-3



ap

nd
a

e

ri
ar
n
o

a
u
n
o

as

nt

.

he
en-

es
rgy
nd
ut-

ons
n in

re-

ion

A. W. C. LAU, P. PINCUS, DOV LEVINE, AND H. A. FERTIG PHYSICAL REVIEW E63 051604
In order to obtain a tractable analytical treatment, we
proximate this expression by splitting the sum overG8 into
two parts. The dominant part, withG852G is

bH int
S 52 (

GÞ0
E d2q

~2p!2

2p l Bn2

q
e2qd

3E d2xE d2x8ei (q1G)•(x2x8)eiG•[uA(x)2uB(x8)] ,

~10!

where we have usedeiG•c521. The second part~those
terms withG8Þ2G) contains extra phase factors that te
to average to zero in the elastic limit. As a first approxim
tion, we neglect such terms. Finally, Eq.~10! can be system-
atically expanded using a gradient expansion,

bH int
S 52 (

GÞ0
DG~d!E d2x cos$G•@uA~x!2uB~x!#%

1O~]aub
( i )]gut

( j )!, ~11!

whereDG(d)5(4p l Bn2/G)e2Gd. Setting Eqs.~2!, ~8!, and
~11! together, we obtain an effective Hamiltonian for th
coupled planar Wigner crystals,

bHe5bH01E d2q

~2p!2

2p l Bn2

q
e2qdqaqbua

A~q!ub
B~2q!

2 (
GÞ0

DG~d!E d2x cos$G•@uA~x!2uB~x!#%. ~12!

The second term in Eq.~12! comes from the long-
wavelength couplings while the third term reflects the pe
odicity of the underlying lattice structure. This particul
structure in the effective Hamiltonian, as will be demo
strated below, leads to a total force which is comprised
two pieces—an exponentially decaying~short-ranged! force
and a long-ranged power-law force,

P~d!52
1

A0
K ]Hint

]d L
He

52
1

A0
K ]H int

S

]d L
He

2
1

A0
K ]H int

L

]d L
He

5PSR~d!1PLR~d!, ~13!

whereA0 is the area of the plane. It is important to emph
size that both forces are present simultaneously, altho
each force dominates at a different spatial scale—the lo
ranged force dominates at large separations while the sh
ranged force dominates at small separations.

To calculate various expectation values in Eq.~13!, it is
convenient to transform the displacement fields into in-ph
and out-of-phase displacement fields byu1(x)5uA(x)
05160
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1uB(x) andu2(x)5uA(x)2uB(x), respectively, so that the
effective Hamiltonian~12! separates into two independe
parts:He5H11H2 with

bH15
1

2E d2q

~2p!2
Pab

1 ~q!ua
1~q!ub

1~2q!, ~14!

and

bH25
1

2E d2q

~2p!2
Pab

2 ~q!ua
2~q!ub

2~2q!

2 (
GÞ0

DG~d!E d2x cos@G•u2~x!#, ~15!

where Pab
6 (q)5 1

2 @(2p l Bn2/q)(16e2qd)Pab
L 1mPab

T #q2.
Furthermore, at low temperature, whereuu2(x)u is small
compared to the lattice constanta, the cosine term in Eq
~15! can be expanded up to second order inuu2(x)u to obtain
the ‘‘mass’’ terms. Within a harmonic approximationH2 ,
up to an additive constant may be written as

bH2.
1

2E d2q

~2p!2
Pab

2 ~q!ua
2~q!ub

2~2q!

1
1

2E d2q

~2p!2
@mL

2Pab
L 1mT

2Pab
T #ua

2~q!ub
2~2q!,

~16!

wheremL,T
2 54p l Bn2(GÞ0Ge2Gd54p l Bn2D0(d). This ap-

proximation is valid below the melting temperature of t
Wigner crystals. Note that the mass terms vanish expon
tially with d as also found in Ref.@20#. The fact that the
transversemT and longitudinal ‘‘mass’’mL are degenerate is
related to the underlying triangular structure of the lattic
@20#. These ‘‘masses’’ are associated with the finite ene
required to uniformly shear the two Wigner crystals, a
thus give rise to a gap in the dispersion relations of the o
of-phase modes. In Secs. II A and II B we derive expressi
for the long-ranged and the short-ranged pressure as give
Eq. ~13! within the harmonic approximation.

A. Long-ranged pressure

The long-ranged power-law force comes from the cor
lated long-wavelength density fluctuations~the plasmon
modes!. The shear modes do not contribute to this interact
since]aPab

T ub
( i )(x)50. Using Eqs.~8! and ~13!, we obtain

an expression for the long-ranged force

bPLR~d!5
2p l B

A0
E d2q

~2p!2
e2qd^drA~q!drB~2q!&,

~17!
4-4
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wheredr i(x)52n“•u( i )(x) is the long-wavelength densit
fluctuation to the lowest order. Making use of the equipa
tion theorem, the correlation function̂drA(q)drB(2q)&
can be evaluated

^drA~q!drB~2q!&

[N 21E Du6~q!drA~q!drB~2q!e2bHe

52A0

q2

4p l B
F 1

q~12e2qd!14D0

2
1

q~11e2qd!
G ,

~18!

where N[*Du6(q)e2bHe is the normalization factor and
D0[(GÞ0Ge2Gd. Substituting this result into Eq.~17!, we
find

PLR~d!52
kBT

d3 a~D0d!, ~19!

where

a~x!>
z~3!

8p
1

x

p
@Ci~2Ax!cos~2Ax!1Si~2Ax!sin~2Ax!#,

~20!

z is the Riemann zeta function, and Ci(x) and Si(x) are the
cosine and sine integral functions@21#, respectively. In the
large distance limit, the second term in Eq.~20! is exponen-
tially suppressed and can be neglected, yieldinga
5z(3)/8p. Therefore, for larged we obtain the long-ranged
attraction arising from correlated fluctuations

PLR~d!52
z~3!

8p

kBT

d3
, ~21!

which is identical to the well-known result from the Deby
Hückel approximation@7#. Note that this long-ranged forc
belongs to the general class of fluctuation-induced forces
which the Casimir effect is a prototype and the amplitu
z(3)/8p>0.048 is universal for this interaction, induced b
the long-wavelength fluctuations@9#. Although the scaling of
this charge-fluctuation-induced force coincides with that
the finite temperature van der Waals interaction, they
very different at low temperature. This is explored in S
III.

B. Short-ranged pressure

The short-ranged force that decays exponentially owe
existence to the ‘‘structural’’ correlations. It survives even
nonzero temperature, in contrast to the conclusion dra
from a single 2D Wigner crystal, as discussed in the Int
duction. However, we expect on physical grounds the sh
ranged force to be weakened by thermal fluctuations.
compute its temperature dependence explicitly, we start w
the expression for this force derived from Eqs.~10! and~13!,
05160
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bPSR~d!522p l Bn2 (
GÞ0

e2(G2/2)^uu2(0)u2& f G~d!, ~22!

where f G(d)5*d2q/(2p)2S(q2G)e2qd, S(q2G)
5*d2rei (q2G)•re2(G2/8)[B1(r )2B2(r )] , and B6(r )5^@u6(r )
2u6(0)#2&. Note that Eq.~22! is exact, provided all the
averages are evaluated exactly. For a system of coupled
fect Wigner crystals at zero temperature,f G(d)5e2Gd. At
finite temperature, but below the melting temperatureTm ,
we note thatB6(r ) varies very slowly in space, so tha
f G(d) can be approximated by its zero-temperature val
f G(d).e2Gd. Hence, we obtain

bPSR~d!>22p l Bn2 (
GÞ0

e2Gd^eiG•[uA(0)2uB(0)]&He
.

~23!

The thermal average of the displacement fields in Eq.~23!
resembles a ‘‘Debye-Waller’’ factor and indicates the deg
to which the short-ranged force is depressed by thermal fl
tuations from its zero-temperature maximum value. Beca
of the cosine term present in Eq.~12!, this Debye-Waller
factor is in general not zero, unlike the case of a single
Wigner crystal. However, if the system has melted into
Coulomb fluid, this cosine term, which comes from the l
tice structure, would have to be modified.

The required expectation value in Eq.~23! only involves
H2 . Within the harmonic approximation, the mean-squa
out-of-phase displacement field can be evaluated

^uu2~x!u2&5
lD

2pnd
lnF d

4D0~d!a2G
1

1

2pm
lnF m

8p l Bn2D0~d!a2G.
G0d

2p FlD

nd
1

1

mG ,
~24!

where lD51/(2p l Bn), a is the lattice constant,m
'0.245n3/2l B is the shear modulus of an isolated Wign
crystal in units ofkBT, and in the last line, we have approx
mated D0(d) by the first nonzero reciprocal-lattice vecto
contribution:D0(d)'G0e2G0d. Note also that the logarith
mic dependence on the ‘‘mass’’@54pn2l BD0(d)# is a char-
acteristic of 2D solids. Inserting Eq.~24! into Eq. ~23!, we
obtain an expression for the short-ranged pressure at fi
temperatures

bPSR~d!.22p l Bn2e2(11j/2)G0d. ~25!

Here, the parameterj defined by

j5
G0

2

2pS lD

nd
1

1

m D ~26!

characterizes the relative strengths of thermal fluctuati
and the electrostatic energy of a Wigner crystal, i.e.,j
;kBTa/e2. Thus, the sole effect of thermal fluctuation
on the short-ranged force is to reduce itsrange: G0
→G0@11(j/2)#.
4-5
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C. Discussion of results

In summary, we have shown that the total pressure
tween two coupled Wigner crystals can be decomposed
a long-rangedPLR and a short-ranged pressurePSR. Each
force is computed below their melting temperature, wh
the harmonic approximation is expected to be valid. The
sult for the total force is

bP~d!.22p l Bn2e2(11j/2)G0d2
a~D0d!

d3 , ~27!

where j5(G0
2/2p)@(lD /nd)1(1/m)# and a(D0d)

5z(3)/8p for larged. In Figs. 2 and 3, we have plottedPSR
and PLR for two values of the coupling constant,G[ l B /a
5150 and 50. Note thatG[e2Apn/(ekBT) is the ratio of
the average Coulomb energy among charges and their
mal energy. Not surprisingly, they show thatPSR dominates
for smalld, andPLR for larged. However, it is interesting to
observe that even for high values ofG, PLR dominates as
soon asd;a. We note that the crossover condition here
not sensitive to the approximation leading to Eq.~25!, since
all higher-order terms neglected are strongly exponenti
suppressed for distances larger than the lattice constant

According to Eq.~25!, the magnitude ofPSR tends to
decrease exponentially with temperature. This strong
crease with increasing temperature is consistent with
Brownian dynamics simulations of Gro”nbech-Jensenet al.
@3#. The shortening of its range may be attributed to
generic nature of strong fluctuations in 2D systems, and
also be understood by the following scaling argument. R

FIG. 2. Plot ofPSR andPLR versusd for G5150. Observe that
the crossover (PLR'PSR) occurs at about d;a. P0

[kBT( l B /a4)31023.

FIG. 3. Same as Fig. 2 forG550.
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ferring back toH2 in Eq. ~15!, one can show that the anoma
lous dimension of the operator cos@G0•u2(x)# is @ length#2j

and correspondingly the dimension ofDG0
(d) is

@ length#j22. SinceDG0
(d) is the only relevant length scal

in H2 , we must havêeiG0•u2(0)&;DG0

j/(22j) @22#. Therefore,

the short-ranged pressure scales like

PSR~d!;2DG0
~d!3^eiG0•u2(0)&

;2DG0
3DG0

j/(22j)

;2e2G0d[2/(22j)] . ~28!

In the low-temperature limit (j!1), we see that the range o
PSR is G0(11j/2) as obtained in Eq.~25!. This scaling
argument also suggests that at higher temperatures the
fluctuations may have interesting nonperturbative effects
zero temperaturej50, so PSR in Eq. ~25! reproduces the
known result of an exponentially decaying attractive force
obtained in Eq.~1!. It should be mentioned that in real bio
logical systems, counterions are likely to be a correlated fl
with short-ranged order. However, as long asG@1 and the
lateral characteristic correlation length is much larger th
the spacing between the layers, it is possible to have st
tural correlations and our calculation should capture
short-ranged attraction at least qualitatively.

The long-ranged pressure for larged in Eq. ~21! agrees
exactly, including the prefactor, with the Debye-Hu¨ckel ap-
proximation. This is hardly surprising since the existence
long-wavelength plasmons~average density fluctuations! is
independent of local structure, and they are present for so
and fluids alike. Thus, the asymptotic long-ranged power-
force must manifest itself even after QLRO is lost via a 2
melting transition driven by dislocations@23#. Therefore, our
formulation captures the essential physics of the attrac
not only arising from the ground-state structural correlatio
but also from the high-temperature charge fluctuation.

III. QUANTUM CONTRIBUTIONS
TO THE LONG-RANGED ATTRACTION

According to theclassicalcalculations above, correlatio
effects give rise to a structural short-ranged and a lo
ranged attractive force. Recall that the long-ranged fo
vanishes asT→0, and that the short-ranged force is stro
gest at zero temperature but vanishes exponentially with
tance. This observation suggests that for sufficiently la
separations correlated attractions at finite temperatures
stronger than those arising from the perfectly correlated ze
temperature ground state. However, we have pointed ou
Ref. @10# ~and recall below! that zero-point fluctuations o
the plasmons lead to an attractive long-ranged interact
which exhibits an unusual fractional-power-law decay
(;d27/2), in contrast to the zero-temperature van der Wa
interaction (;d24). Hence, in theT→0 limit, this ‘‘zero-
point attraction’’ dominates the short-ranged structural fo
at large separations. Furthermore, we expect that quan
fluctuations persist at finite temperature, and in this sect
4-6



od
te
th
ow
i
th
o
le
ac
t
e
e
c
o

e
t

th

tio
e

t
A

as

t
m
.
-

y,

ion

a-
o-
not
ni-

-

-
y

s it
re-
m-

-
an-
er-

a-

in-
sys-
tant
c-
g-
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we also compute their temperature dependence.
To this end, it is more convenient to employ a meth

with which fluctuation-induced forces are usually calcula
@9#. The advantage of the elastic approach in Sec. II is
the short-ranged force is captured more transparently. H
ever, for the long-ranged force, an equivalent formulation
terms of the plasmon excitations seems more natural in
low-temperature regime where quantum effects are imp
tant. Below, we recall the phonon spectrum of the coup
Wigner crystals, identify the plasmon modes, which char
terize the density fluctuations of the system, and compute
attractive force arising from fluctuations using explicitly th
Bose-Einstein distribution, which appropriately captur
quantum effects at very low temperature and thermal effe
at higher temperature, for phonons in general and plasm
in this particular case.

Within the harmonic approximation to the effectiv
Hamiltonian, the dynamical matrix can be diagonalized
yield four modes. Two of them are the shear modes of
system that do not contribute to the long-ranged force@10#.
The dominate modes that lead to the long-ranged attrac
are the two plasmon modes of two-coupled 2D Wign
crytals, which have the following dispersion relations:

v1
2~q!5

8pe2n

me
D0~d!1

2pe2n

me
q~12e2qd!, ~29!

v2
2~q!5

2pe2n

me
q~11e2qd!, ~30!

where m is the mass of the charges andD0(d);e2Gd is
proportional to the energy gap~the ‘‘mass’’ term! for the
out-of-phase mode. The plasmon modes are related to
correlated charge-density fluctuations in the two layers.
any finite temperature, the free energy of the low-lying pl
mon excitations is given by the Bose-Einstein distribution

F~d!/A05
\

2 (
i 51,2

E d2q

~2p!2
v i~q!

1kBT (
i 51,2

E d2q

~2p!2
ln@12e2b\v i (q)#, ~31!

whereA0 is the area of the plane. Since the energy gapD0 is
exponentially damped for large distances, its contribution
the free energy may be neglected in the large distance li
where the long-ranged force is expected to be dominant

The first term in Eq.~31! arising from the zero-point fluc
tuations leads to an attractive pressure@10#

PLR
0 ~d!52

1

A0

]F0~d!

]d
52A\2e2n

me

a1

d7/2
, ~32!

where a1 is a positive numerical constant of order unit
explicitly given by

a15
1

4A2p
E

0

`

dxx5/2e2xH 1

A12e2x
2

1

A11e2xJ . ~33!
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Thus, zero-point fluctuations induce a long-range attract
which decays with a power law;d27/2. This should be con-
trasted with the usual Casimir-like force;d24, which arises
from, for example, the acoustic-phonon zero-point fluctu
tions. We note that this power law stems from the tw
dimensional nature of charged systems: 2D plasmons do
have a finite gap, as they do in 3D. For an order of mag
tude estimate, assumingm;10225 kg, n;1/50 Å22, d
;10 Å, and e;80, we find PLR

0 ;10225 J/ Å3. This is
close to the magnitude of the short-ranged force in Eq.~1! at
zero temperature:PSR(d);10224 J/ Å3, and thus may be
just as important under suitable conditions.

An additional contribution to the pressure at finite tem
perature arises from the second term in Eq.~31!,

bPLR~d!52
\L

4pd7/2E0

`

dxx5/2

3H 1

exp@hAx~12e2x!#21

e2x

A12e2x

2
1

exp@hAx~11e2x!#21

e2x

A11e2xJ ,

~34!

whereL5A2pe2n/me andh5b\L/Ad. We can evaluate
this expression in two limits.

In the limit h@1, Eq. ~34! can be systematically ex
panded in powers ofh21. The lowest-order term is given b
PLR(d)52a2(kBT/lLd2), where lL[aB( l B /2lD), aB
[e\2/(me2) is the effective Bohr radius, a2

[(1/4p)*0
`dx@x2/(ex21)#5z(3)/(2p), andz is the Rie-

mann zeta function. We observe that the conditionh@1 is
equivalent to the short distance limitd!lL .

In the limit h!1 or the large distance limitd@lL , we
expand the exponential in the denominator of Eq.~34! to
obtain PLR(d)52a(kBT/d3), where a5z(3)/(8p). This
result agrees with the classical calculation in Sec. II A a
should. Therefore, we have the following regimes for cor
lated attraction from plasmon fluctuations arising finite te
perature contributions

PLR~d!.H 2kBT/d3 for lL!d

2kBT/~lLd2! for lL@d.
~35!

We note thatlL , in contrast tolD , increases with decreas
ing temperature, indicating, as one might expect, that qu
tum fluctuations are important at low temperatures. Furth
more, sincePLR(d)→0 asT→0, the attractive interaction
as T→0 is governed by zero-point fluctuations as emph
sized above. In the strong Coulomb coupling limitl B /lD
;100, we getlL;3 Å for e;100 andaB;1/20 Å. It
should be emphasized that the results in this section are
dependent of the nature of the ground state. Thus, any
tem where low-temperature modes of plasmon are impor
may, in principle, exhibit the behavior predicted in this se
tion. This means that quantum contributions to the lon
4-7
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ranged attraction are unlikely to be relevant for macroio
Our motivation here stems from the desire to understand
charge-fluctuation-induced attraction between coupled la
in a complete picture. However, our results may have r
impact in a greater field of fluctuation-induced forces in ge
eral and for electrons in bilayer semiconductor systems
particular. Indeed, there exist recent theoretical efforts
voted to this subject@13#.

IV. DISCUSSION AND CONCLUSION

In this paper we have studied analytically the electrost
attraction between two planar Wigner crystals in the stro
Coulomb coupling limit. We show that the total attractiv
pressure can be separated into a long-ranged and s
ranged component. The long-ranged pressure arises
correlated fluctuationsand the short-ranged pressure fro
the ground-state‘‘structural’’ correlations. We also compute
the very-low-temperature behavior of the fluctuation-induc
attraction, where long-wavelength plasmon excitation m
be described by Bose-Einstein statistics. The results are s
marized in Fig. 4, showing different regimes for the charg
fluctuation-induced long-ranged attraction, including t
short-distance result, which scales asd21 for d,lD in Ref.
@7# and the characteristic decay lengthl SR for the short-
ranged force. For smalld, the short-ranged force is alway
dominant, but the decay length shrinks with increasing te
perature. The crossover from the short-ranged to long-ran
dominant regimes occurs aboutd;a. Thus, for larged@a
only the long-ranged force is operative, which crosses o
from d27/2 at zero temperature to the finite-temperature d
tance dependence ofd22 if d,lL andd23 if d.lL . This
provides a unified description to the electrostatic attract
between two-coupled Wigner crystals.

In addition, our formulation may offer further insight
into the nature of the counterion-mediated attraction at s
distances. As discussed in Sec. II B, the reason that the s
ranged force in Eq.~23! does not vanish is because of th
cosine term inH2 given in Eq.~15!, which represents the
underlying lattice structures, and our results indicate that
strength of the short-ranged force decreases exponen
with temperature. However, at higher temperatures the
pression forPSR in Eq. ~25! is no longer valid, since the
harmonic approximation breaks down. Indeed, the sca

FIG. 4. A schematic phase diagram summarizing differ
charge-fluctuation-induced attraction regimes. The character
decay lengthl SR of the short-ranged force is also shown.
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argument leading to Eq.~28! suggests that if the full cosine
term is retained,PSR may exhibit nonperturbative behavior
asj→22.

To discuss qualitatively what happens at higher tempe
tures, we assume thatDG(d) is sufficiently small and the
system of interacting Wigner crystals is below its melti
temperatureTm . Then, the charges between the two laye
may unlock via a Kosterlitz-Thouless~KT! type of transition,
determined by the relevancy of the cosine term inH2 , at
j52 @24#. An order of magnitude estimate for the couplin
constant isG;13. In the locked phase,j!2, the periodic
symmetry inH2 is spontaneously broken, and the resulti
state is well captured by the harmonic approximation. On
other hand, whenj.2 the fluctuations are so large that th
ground state becomes nondegenerate~gapless!, i.e., the lay-
ers are decoupled. To computePSR in the unlocked phase
H int

S given in Eq. ~11! can be treated as a perturbation
evaluating the Debye-Waller factor in Eq.~23!. To the low-
est order, we obtain

PSR~d!.2
kBT

lD
2 aS j21

j22De22G0d, ~36!

wherelD51/(2pnlB). We first note that this expression d
verges asj→21, indicating the breakdown of the perturba
tion theory as the temperature is lowered. Furthermore
contrast to Eq.~25!, the range ofPSR remains constant and
the amplitude acquires a temperature dependence of;T21

~for large j@2), reminiscent of a high-temperature expa
sion @25#.

However, the above picture may be modified if th
charges have melted into a Coulomb fluid via a dislocati
mediated melting transition@23# beforej→22. If this is the
case, further analysis is necessary to obtain a more comp
picture of the high-temperature phase. Although the spa
correlations in a system of coupled 2D Coulomb fluids a
expected to be somewhat different from 2D Wigner crysta
the solid phase results above suggest a qualitativelower limit
of G;13 at whichPSR crosses over from low-temperatur
behavior in Eq.~25! to high-temperature behavior in Eq
~36!. It may be of interest to note that in Ref.@6#, an estimate
for the upper limit of G at which the Poisson-Boltzman
equation breaks down is of the order ofG;3. For divalent
counterions ‘‘condensed’’ onto a highly charged~opposite!
plate of surface charge densitys;e/10 Å 22, G;20 at
room temperature and the counterions are best described
2D correlated Coulomb fluid. However, as long as the ch
acteristic lateral correlation length is much larger than
spacing between the two layers, our elastic approach sh
capture the qualitative behavior of the short-ranged attr
tion. A better theory should include the melting of coupl
2D Wigner crystals by introducing excitations of dislocatio
into the effective Hamiltonian Eq.~12! similar to what is
done in Ref.@26#. These considerations may help to establ
an analytical theory of the attraction arising from counteri
correlations not captured by the Poisson-Boltzmann the
The present formulation is a first step in that direction.
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