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Electrostatic attraction of coupled Wigner crystals: Finite temperature effects
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In this paper we present a unified physical picture for the electrostatic attraction between two coupled planar
Wigner crystals at finite temperature. This model may facilitate our conceptual understanding of counterion-
mediated attractions betweémghly) similarly charged planes. By adopting an elastic theory, we show that the
total attractive force between them can(bpproximately decomposed into a short-ranged and a long-ranged
component. They are evaluated below the melting temperature of the Wigner crystals. In particular, we analyze
the temperature dependence of the short-ranged attraction, arising from ground-state configuration, and we
argue that thermal fluctuations may drastically reduce its strength. Also, the long-range force agrees exactly
with that based on the charge-fluctuation approach. Furthermore, we take quantum contributions to the long-
ranged(fluctuation-inducegattraction into account and show how the fractional power law, which scales as
d~ " for large interplanar distance at zero temperature, crosses over to the classical redimevia an
intermediate regime of 2.
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I. INTRODUCTION densed” counterior(in-plane fluctuations in the Gaussian
approximation. This theory predicts a long-ranged attraction
Electrostatic interactions play an important role in sys-which scales with the interplaner distancedas’ and van-
tems of charged macroions in agueous solutions of neutralshes asT—0 [7]. Note that this long-ranged force belongs
izing counteriong1]. The macroions may be charged mem-to the general class of fluctuation-induced forf@ In the
branes, stiff polyelectrolytes such as DNA, or chargedother approach based on “structural” correlations proposed
colloidal particles. Recently, there has been a great interest ily Rouzina and Bloomfield8], the attraction comes from
understanding the attractive force arising from correlationshe ground-state configuration of the condensed counterions.
between highly charged macroions as evidenced in experindeed, at sufficiently low temperature, the condensed coun-
ments[2] and in simulationg3]. This attraction is not con- terions crystallize on the charged surface to form a two-
tained in the standard Poisson-Boltzmafi*B) treatment, dimensional(2D) Wigner crystal. When brought together,
even for an idealized system of two highly charged planathe counterions of two Wigner crystals correlate themselves
surfaces. Indeed, it has been proven recently that PB theofy minimize the electrostatic energgee Fig. 1. The pres-
predicts only repulsions between two likely charged objectsure between them can easily be calculated at zero tempera-
[4]. Recall that the PB solutiofi] for a single charged sur- ture[8,10]
face with charge densitgn—where e is the elementary
charge andn the areal density—immersed in a solution

of neutralizing counterions of valencg predicts a length o [e2n 1
scale \g=1/(2mlgZn) [where lz=e%ekgT~7 A is the Mse(d)=——51— D
Bjerrum length below which electrostatics dominates the J € T y|R+c*+d

thermal energy in an aqueous solution of dielectric constant ) 2 2
€=80 (H,0), kg is the Boltzmann constant, antlis the _(en dr | __2m(en o
temperaturg Physically, this Gouy-Chapman lengkly de- € Jr2+d?
fines a sheath near the charged surface within which most of
the counterions are confing8]. For a moderately charged
surface ofn~1/100 A 2, \s is of the order of a few ang- Ry - P e
stroms, and for highly charged surfaces and multivalent S e g P
counterionsZ>1, we have\g<lg, signaling the break-
down of PB theory. In this limit, fluctuations and correlations
about the mean-field potential become so large that the solu = — = v
tion to the PB equation no longer provides a reasonable ap B~ %% o % % e
proximation[6]. ° . .. . o« o
To account for the attraction arising from correlations,
two distinct approaches have been proposgé]. The first FIG. 1. A schematic picture of two staggered Wigner crystals
approach, based on charge fluctuation, treats the ‘“conformed by the “condensed” counterions at very low temperatures.

—Gpd (1)
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for large d, whereR, are the lattice sites; is the relative  the plasmon§10]. This is the low-temperature counterpart of
displacement vector between two lattices of the differenthe long-ranged force arising from charge fluctuation at finite
plane, Go=4m/(/3a) is the magnitude of the first temperature. While this low-temperature result only bears a

reciprocal-lattice vector, ané= 2/(\/§n) is the lattice conceptual interest for macroions, it may have real relevance
constant. Hence, these staggered Wigner crystals attract eaéhthe larger context of fluctuation-induced interactions in
other via a short-range force that decays exponentially witlgeneral, and in semiconductor bilayers in partic{iz8]. In-
the lattice constant as the characteristic length scale. Clearljgrestingly, although similar to the Casimir effect, arising
this short-ranged force is strongest at zero temperature arftom zero-point fluctuations &t= 0, the fluctuation-induced
thermal fluctuations diminish this attraction. force associated with two-coupled Wigner crystals is funda-
Although the physical origin of the attraction is clear in mentally different. The Casimir effect pertains to two metal
each approach, the relationship between them remains somslabs separated by a gap of distadgeutside of which there
what obscure, and this has generated a debate in the literatugeno electric field; this force scalels * at T=0 [14]. For the
[11]. Therefore, it is desirable to formulate a unified ap-case of coupled Wigner crystals, zero-point fluctuations of
proach that captures the physics of both mechanisms anfle plasmons lead to a characteristically different force,
addresses some important issues, for example, the tempeignich decays with a novel power lawt~ 72 [10]. Hence,
ture dependence of the short-ranged force, computed only §lis |ong-ranged attractive force dominates the ground-state
zero temperature in Eq1). It is the goal of this paper 0 gyt ranged attraction in E€L) for larged. Furthermore, it

t:cglr};]l:é?itgnsléicsr:ri%rlljt%%ngaggéeilt?acl(le zit/\/f"é;ﬁg%?{;ﬁgjlrewtg@ of fundamental interest to consider finite-temperature ef-
y ' fects as well. This is done in Sec. Ill, where we first recall

consider a model system composed of two uniformly : : .
charged planes a distandepart, each having a charge den- the phonon spectrum of t_he coupled W|gner crystal_s, identify
the plasmon modes, which characterize the density fluctua-

sity en. Confined on the surfaces are negative pointlike mo—t. £ th q h Ve f .
bile charges of magnitude In order to understand correla- lons of the system, and compute the attractive force arising

tion effects that are not captured by PB theory, we assurngom flugtuations us!ng explicitly the Bose-Einstein distribu-
that the charges form a system of interacting Wigner crystaldon, which appropriately captures quantum effects at very
and develop a detailed physical picture of the electrostatié®W temperatures and thermal effects at higher temperatures
interaction between them at finite temperatures but beloor Phonons in general and for plasmons in this particular
their melting temperaturgL2). case. Our result in the classical regime, which scdle3,

In particular, we compute the electrostatic attraction be2drees exactly including the prefactor with that based on 2D
tween the two layers by explicitly taking into account both Debye-Hickel theory and “elasticity” theory in Sec. II.
correlated fluctuationsand “structural” correlations. (By  Thus, we have provided an interesting but different perspec-
structural correlations we mean the residual ground-state tive on the same problem and explicitly show how the’">
spatial correlations that remain at finite temperajuy  force law at zero temperature crosses over todthe law at
adopting an elasticity theory, the total force of the systenhigh temperature via an intermediate® regime.
can be decompose@approximately into a short-ranged Another point worth mentioning concerns the ordering of
component arising from structural correlations and a long2D solids which exhibit quasi-long-range-ordéQLRO)
ranged component from correlated fluctuations. They are cal15]. It is well known that a true long-range order is impos-
culated in Sec. Il within the harmonic approximation usingsible for 2D systems with continuous symmetries. For a 2D
Boltzmann statisticgclassical, which is valid below the solid, which may be described by continuum elasticity theory
melting temperature of the Wigner crystals. We show thatvith nonzero long-wavelength elastic constants, the Fourier
the short-ranged force persists at finite temperature, and wgomponents of the density functiorfr) =Sgng(r)e'® " av-
obtain a simple expression—see E25)—which reduces to  erage(thermally out to zero for a nonzero reciprocal-lattice
the zero-temperature result in Ed) [8,10]. The interesting  Vector G, i.e., (ng(r))=(e'®“")=0, whereu(r) are the
effect of thermal fluctuations is to reduce trenge of this  displacements of the particles from their equilibrium posi-
force and thus the effect is not negligible even below thetions, while the correlation function decays algebraically to
melting temperature of the Wigner crystals. For the long-zero: {ng(r)ng(0))~r~76(0 with 5g(T)=ksTG*(3u
ranged force, this “elastic” calculation—see H§1)—finds ~ +\)/4mu(2u+\), wherex and\ are Lameelastic con-
exactly the same result, even including the prefactor, as thetants. This slow power-law decay of the correlation function
Debye-Hickel (Gaussiah approximation[7]. This is to be is very different from the exponential decay one would ex-
expected since the long-wavelength density fluctuationspect in a liquid. Hence the term QLRO. For a single 2D
which give rise to the long-ranged force, are independent o¥Vigner crystal, QLRO implies that the thermal average of
the local Wigner crystal-like ordering. Thus, an importantthe electrostatic potential at a distant@bove the plane is
insight gained here is that what is previously thought of aszero at any nonzero temperature, in contrast to a perfectly
disparate mechanisms for the attractions—the short-rangeatdered lattice T=0) where the electrostatic potential de-
attraction(ground statg for low temperature and the long- cays exponentially withd. This may lead to the conclusion
ranged attractioicharge fluctuationfor high temperature— that at finite temperatures the short-ranged force between
are both captured within a single framework. two-coupled Wigner crystals should likewise be zero. As we

In addition, at zero temperature there must also be a longshow below, this is not the case because the susceptibility,
ranged attraction derived from treuantumfluctuations of ~ which measures the linear response of a 2D lattice to an
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external potential, nevertheless diverges at the reciprocalwhere the displacement field"(x) is defined in such a way
lattice vectors as in three-dimensiort@D) solids[16]. that it has no Fourier components outside of the Brillouin
However, in real biological systems, the ordering of thezone(BZ). Then, the density;(x) can be written as
counterions may be far from a Wigner crystal. Nevertheless,
it is important to understand counterion-mediated attractions L _
between two highly charged surfaces in this Wigner-crystal Pi(X):EI SR — ¢V (x)]def 3,45 (%], )
limit, since it does provide usefigjualitativeinsights into the
nature of this problem, and moreover, the present formula-
tion may serve as a starting point for a more sophisticate ) ; X . . .
theory which includes the melting of coupled Wigner crys-t e underlylng lattice 5|te§. Using the Fqurler _representatlon
tals. of the § function and soIvmgd)g)(x) iteratively in terms of
This paper is organized as follows. In Sec. Il we derive arfh® displacement field, we obtain a decomposition of the
effective Hamiltonian that describes two interacting planadensity for theith layer into slowly and a rapidly spatially
Wigner crystals starting from the zero-temperature ground/@rying pieces
state. The total pressure is then decomposed into a long-
ranged and a short-ranged component, which are evaluated
in Secs. Il A and Il B, respectively, and a detailed discussion
of our results is presented in Sec. Il C. In Sec. Il we present

an argument for a long-ranged attractive force arising fromyhere G is a reciprocal-lattice vector. Note that we have
the zero-point quctgaﬂo_ns at zero temperature. In add't'onneglected terms that are products of the slowly and the rap-
we use the Bose-Einstein distribution to calculate the attraGyly varying terms. Physically, the first term represents den-

hereR, are the equilibrium positions of the charges, i.e.,

p(0)—n=-nV.-udx)+ D nec bl (g
G#0

tive long-ranged pressure in the quantum regimes. sity fluctuations for wavelengths greater than the lattice con-
stant, and the second term represents the underlying lattice,
Il. EFFECTIVE HAMILTONIAN AND PRESSURE modified by thermal fluctuations. Using the density decom-

) o ) ) i position (6), H;,; may be written as
We start with the Hamiltonian for two interacting Wigner

crystals:H="Hy+ H;n. . Here, Hy is the elastic Hamiltonian

2
for two isolated Wigner crystalgl7] BHim:J d q2 27T|Beqdj dzxj d2x’ g9 (x—x")
(2m)c d
1 d’g OYPRIRO!
i (2m) =0

where B~ *=kgT, u)(q) is the Fourier transform of the
in-plane displacement field of the charges in ftlie layer
(i=A or B), Il4(q)=[(27lgn?q)P, s+ uPl,419? is the
dynamical matrixu~0.245°%4 5 is the shear modulys.8] (7)

in units of kT, and P;,=0,05/0° and Pl;=5,4 . o

tor, respectively. Here, Greek indices indicate Cartesiafices of the different plane and we have used the fact that

componentsH, ; is the electrostatic interaction between the 1/VX*+d*= [[d’q/(2m)?]e'd*(2w/q)e” . Again neglect-

X

nv-uB(x')— E neiG’~[x’+c+uB(x’)] ,
G'#0

two layers, ing the products of slowly and rapidly varying terms, which
give vanishingly small contributions when integrating over
Lpa(x)—n][pg(x’)—n] all space H;,; separates into two pieces: a long-wavelength

BHint= I BJ d2Xd2X \/m ) (3) term

wherep;(x) is the number density of charges in il layer. BHE =
In order to capture the long-wavelength coupling as well as

discrete lattice effects which are essential for our discussions

on the short-ranged force, we employ a method, similar taand a short-wavelength term
that in Ref.[19], which allows us to derive an effective

(2m? q

d?q 2mlgn®
L j P e g, quA(@ui(—q) (©)

Hamiltonian that is valid in the elastic regime where the d2 2
. i ; . . g 2mlgn® _
density fluctuations are slowly varying in space, i.e., gﬁﬁanr 2 j . qd
V-u(x)<1, but |u’(x)—uB(x)| need not be small com- 67020 J (2m)* d
pared to the lattice constaat
Let us introduce a slowly varying field for each layer, xf dzxf d2x’ gt (x—x") i G- [x+uA(x)]
¢S () =x,~uP[V (0], 4 X gi6" [+ uPe)], ©)
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In order to obtain a tractable analytical treatment, we ap-+u8(x) andu™ (x)=u”(x) — uB(x), respectively, so that the
proximate this expression by splitting the sum o@rinto  effective Hamiltonian(12) separates into two independent

two parts. The dominant part, witB'=—-G is parts: He="H., + H_ with
d?q 2wlgn? 2
BTt GEsﬁO (2m? 9 BH.=5 WHZB(Q)UZ(Q)UE(—Q), (14)
dezxf d2xrei(q+G)~(x—x’)eiG-[uA(x)—uB(x’)]
’ and
(10)
. 2q
where we have use@'®°=—1. The second partthose BH_=§f —ZH;B(q)u;(q)u;(—q)
terms withG’ # — G) contains extra phase factors that tend (2m)

to average to zero in the elastic limit. As a first approxima-

tion, we neglect such terms. Finally, HG0) can be system- -> AG(d)f d*xcogG-u(x)], (15
atically expanded using a gradient expansion, G#0

where TI,,(q)=3[(27lgn?/q)(1xe 9 Pg,+uP 10
Furthermore, at low temperature, wheg (x)| is small
_ , compared to the lattice constaat the cosine term in Eq.
+0(a,uya,ul), (11)  (15) can be expanded up to second ordeuin(x)| to obtain
the “mass” terms. Within a harmonic approximatioi_ ,
whereAg(d)=(47lgn?/G)e © Setting Eqs(2), (8), and  up to an additive constant may be written as
(11) together, we obtain an effective Hamiltonian for the

coupled planar Wigner crystals,

BHS = —;0 AG(d)J d?x cod G- [uA(x)—uB(x) ]}

11 d’q - -
BH}EJ H g(u, (Qug(—q)

d’q 2wlgn? (2m)?
BHe=BHo+ f 2m)? qB e %%y, qgul(a)up(—a) "
q _ _
+§f (ZT)Z[mEPEBJFm%PlB]Ua(Q)UB(—Q),

—;0 AG(d)f d?x cod G- [uA(X)—uB(x)]}. (12 6

The second term in Eq(12 comes from the long- 2 2 _Gd_ 2 . i
wavelength couplings while the third term reflects the peri—Wher.emL.rT_.A'Wan 2ez0Ge "=4mlgnAg(d). This ap
proximation is valid below the melting temperature of the

odicity of the underlying lattice structure. This particular Wigner crystals. Note that the mass terms vanish exponen-
structure in the effective Hamiltonian, as will be demon- ially with d as also found in Reff20]. The fact that the

strated below, leads to a total force which is comprised otransversem and longitudinal “mass’m, are degenerate is
two pieces—an exponentially decayifghort-rangeiforce T . ; L .
P P y yingh geyl related to the underlying triangular structure of the lattices

and a long-ranged power-law force, [20]. These “masses” are associated with the finite energy
1 /oM. require_d to uniformly s_hear th_e two Wigner_ crystals, and

M(d)=— _< ”“> thus give rise to a gap in the dispersion relations of the out-

ad 2 of-phase modes. In Secs. Il A and Il B we derive expressions

for the long-ranged and the short-ranged pressure as given in

e

L 1/ oHE, Eq. (13) within the harmonic approximation.
Ao\ ad |, A\ ad
A. Long-ranged pressure
=ITgg(d) +1I (d), (13

The long-ranged power-law force comes from the corre-
lated long-wavelength density fluctuatiorighe plasmon

whereA, is the area of the plane. It is important to empha- : L .
size that both forces are present simultaneously, aIthoquOdess' TrT1e s(ir;ear modes_do not contribute to this mtera_lctlon
inced,P,gup’(X)=0. Using Egs(8) and (13), we obtain

each force dominates at a different spatial scale—the long>" af
ranged force dominates at large separations while the shor@ expression for the long-ranged force
ranged force dominates at small separations.

; ; ; . 27l d?q
To calculate various expectation values in Etp), it is M, o(d)= Bf e-49( 5 Sonl —
convenient to transform the displacement fields into in-phase Allir(d) Ao J (2m)? (9pa(0)Spe(~ ),
and out-of-phase displacement fields hy (x)=u*(x) a7
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wheredp;(x)=—nV-u)(x) is the long-wavelength density

(2 - 2
fluctuation to the lowest order. Making use of the equiparti- ~ Blsgd)= —27T|ango e (72O (d), (22
tion theorem, the correlation functiopa(q) Spg(—a))
can be evaluated where | fG(d)=f(32q/(+2w)2§(q—G)e_qd, S(q—G)
B :J‘erel(q—G)~re—(G /8)[B™ (r)—B (r)], and Bi(r):<[ut(r)
(pa(d) dpe(—a)) —u™(0)]%). Note that Eq.(22) is exact, provided all the
. . e averages are evaluated exactly. For a system of coupled per-
=N f Du™(q) 8pa(a) Spg(—q)e P fect Wigner crystals at zero temperatufg(d)=e~¢9, At
finite temperature, but below the melting temperattyg,
q? [ 1 1 we note thatB=(r) varies very slowly in space, so that

fg(d) can be approximated by its zero-temperature value:

_AO — — — ,
4W|qu(1_e “+an, q(l+e ) fo(d)=e"®9 Hence, we obtain

(18)
- _ 2 —Gd/ i G-[uA(0)—uB(0)]
where N=[Du™(g)e #"e is the normalization factor and Pllsp(d)=—2mlgn GE#) e "e Iy
fA_O(jEEGMGe*Gd. Substituting this result into Eq17), we (23
in

The thermal average of the displacement fields in @8)
resembles a “Debye-Waller” factor and indicates the degree

I r(d)=— FB?Q'(AOd), (19 to which the short-ranged force is depressed by thermal fluc-
tuations from its zero-temperature maximum value. Because
where of the cosine term present in E¢L2), this Debye-Waller
factor is in general not zero, unlike the case of a single 2D
{3) x Wigner crystal. However, if the system has melted into a

[ Ci(2+/X)cog 2X) + Si(2yX)sin(2yX)], Coulomb fluid, this cosine term, which comes from the lat-
tice structure, would have to be modified.

The required expectation value in E@3) only involves
H_ . Within the harmonic approximation, the mean-square
out-of-phase displacement field can be evaluated

C!(X)EW‘F;

(20

{ is the Riemann zeta function, and €j(and Sik) are the
cosine and sine integral functiof21], respectively. In the

large distance limit, the second term in Eg0) is exponen- \o d
tially suppressed and can be neglected, vyieldiag (Ju™(x)|?)= 5 dIn A (dal
={(3)/8mw. Therefore, for largel we obtain the long-ranged mn o(d)a
attraction arising from correlated fluctuations 1 u God[rp 1
{(3) kgT " Zﬁﬂln{SﬂanAo(d)az T 2w m+;}'
B
I g(d)=— B P (21 (29)

where Np=1/(2mlgn), a is the lattice constant,u
which is identical to the well-known result from the Debye- ~0.245:%% is the shear modulus of an isolated Wigner
Huckel approximatior{7]. Note that this long-ranged force crystal in units ofkgT, and in the last line, we have approxi-
belongs to the general class of fluctuation-induced forces, imated Ay(d) by the first nonzero reciprocal-lattice vector
which the Casimir effect is a prototype and the amplitudecontribution: Ay(d)~Ggye ™ ®09. Note also that the logarith-
£(3)/87=0.048 is universal for this interaction, induced by mic dependence on the “mas$=4mn?lgA(d)] is a char-
the long-wavelength fluctuatio8]. Although the scaling of  acteristic of 2D solids. Inserting E§24) into Eq. (23), we
this charge-fluctuation-induced force coincides with that ofobtain an expression for the short-ranged pressure at finite
the finite temperature van der Waals interaction, they argemperatures
very different at low temperature. This is explored in Sec.
. Blls(d)=—2mlgn?e~ (7260, (25

Here, the parametef defined by
B. Short-ranged pressure

The short-ranged force that decays exponentially owes its Gcz;( )\_D 1) 26)

existence to the “structural” correlations. It survives even at ~ 24l nd + ;
nonzero temperature, in contrast to the conclusion drawn

from a single 2D Wigner crystal, as discussed in the Introcharacterizes the relative strengths of thermal fluctuations
duction. However, we expect on physical grounds the shortand the electrostatic energy of a Wigner crystal, i£.,
ranged force to be weakened by thermal fluctuations. To-kgTa/e?. Thus, the sole effect of thermal fluctuations
compute its temperature dependence explicitly, we start witlon the short-ranged force is to reduce itange Gy

the expression for this force derived from E¢E0) and(13), —Gg[1+(&/2)].
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ferring back to{_ in Eq.(15), one can show that the anoma-
lous dimension of the operator ¢@,-u~(x)] is [length ~¢
and correspondingly the dimension oﬂGo(d) is

[length]¢~2. SinceAg (d) is the only relevant length scale
in7_, we must havée' %o (9)~Ag (279 [22]. Therefore,
the short-ranged pressure scales like

Msg(d)~ —Ag,(d)x (e ()

d/a

~ _AGOX Aé/(Z*f)
FIG. 2. Plot ofl[IsgandIlI,  versusd for I'=150. Observe that °
the crossover Il gr~IIsp) occurs at aboutd~a. II, ~ — g Godl2/(2= 9] (28
=kgT(lg/a*)x 103
In the low-temperature limit{<1), we see that the range of
C. Discussion of results IIsr is Go(1+¢&/2) as obtained in Eq(25). This scaling

In summary, we have shown that the total pressure pedrgument also suggests that at higher temperatures thermal

tween two coupled Wigner crystals can be decomposed imguctuations may have interesting nonperturbative effects. At

a long-ranged], ; and a short-ranged pressufeg. Each 260 temperatur¢ =0, SOHS.R in Eq. (2.5) reprodgces the
force is computed below their melting temperature, Wherémown result of an exponentially decaying attractive force as
obtained in Eq(1). It should be mentioned that in real bio-

the harmonic approximation is expected to be valid. The re; " . . .
sult for the total force is Io_glcal systems, counterions are likely to be a correlated fluid
with short-ranged order. However, as longlas 1 and the
a(Agd) lateral characteristic correlation length is much larger than
BII(d)=— 27l gn?e” (1+&2)Cud —q® + (@70 the spacing between the layers, it is possible to have struc-
tural correlations and our calculation should capture the
) short-ranged attraction at least qualitatively.
where £=(Gg/2m)[(A\p/nd)+(1/n)] and  a(Agd) The long-ranged pressure for lardein Eq. (21) agrees
={(3)/8m for larged. In Figs. 2 and 3, we have plottéfisr  exactly, including the prefactor, with the Debyé-tkel ap-
andlII g for two values of the coupling constardt=Ig/a  proximation. This is hardly surprising since the existence of
=150 and 50. Note thaf =e?\/mn/(ekgT) is the ratio of  |ong-wavelength plasmon@verage density fluctuationss
the average Coulomb energy among charges and their theixdependent of local structure, and they are present for solids
mal energy. Not surprisingly, they show tHat dominates  and fluids alike. Thus, the asymptotic long-ranged power-law
for smalld, andII,  for larged. However, it is interesting to  force must manifest itself even after QLRO is lost via a 2D
observe that even for high values Bf 11, g dominates as melting transition driven by dislocatiofig3]. Therefore, our
soon asd~a. We note that the crossover condition here isformulation captures the essential physics of the attraction
not sensitive to the approximation leading to E2p), since  not only arising from the ground-state structural correlations,
all higher-order terms neglected are strongly exponentiallyput also from the high-temperature charge fluctuation.
suppressed for distances larger than the lattice constant.
According to Eq.(25), the magnitude ofllgg tends to
decrease exponentially with temperature. This strong de-
crease with increasing temperature is consistent with the
Brownian dynamics simulations of Gibech-Jenset al. According to theclassicalcalculations above, correlation
[3]. The shortening of its range may be attributed to theeffects give rise to a structural short-ranged and a long-
generic nature of strong fluctuations in 2D systems, and caranged attractive force. Recall that the long-ranged force
also be understood by the following scaling argument. Revanishes a§ —0, and that the short-ranged force is stron-
gest at zero temperature but vanishes exponentially with dis-

I1l. QUANTUM CONTRIBUTIONS
TO THE LONG-RANGED ATTRACTION

1.2 tance. This observation suggests that for sufficiently large
1.0 separations correlated attractions at finite temperatures are
stronger than those arising from the perfectly correlated zero-
= 08 temperature ground state. However, we have pointed out in
= 06 Ref. [10] (and recall below that zero-point fluctuations of
Y04 the plasmons lead to an attractive long-ranged interaction,
which exhibits an unusual fractional-power-law decay
02 . (~d~"?), in contrast to the zero-temperature van der Waals
0.0 interaction (~d~%). Hence, in theT—0 limit, this “zero-
0.5 1.0 1.5 2.0 ; L :
d/a point attraction QOmlnates the short-ranged structural force
at large separations. Furthermore, we expect that quantum
FIG. 3. Same as Fig. 2 fdr =50. fluctuations persist at finite temperature, and in this section,
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we also compute their temperature dependence. Thus, zero-point fluctuations induce a long-range attraction

To this end, it is more convenient to employ a methodwhich decays with a power law d~ /2. This should be con-
with which fluctuation-induced forces are usually calculatedtrasted with the usual Casimir-like foreed~#, which arises
[9]. The advantage of the elastic approach in Sec. Il is thafrom, for example, the acoustic-phonon zero-point fluctua-
the short-ranged force is captured more transparently. Howtions. We note that this power law stems from the two-
ever, for the long-ranged force, an equivalent formulation indimensional nature of charged systems: 2D plasmons do not
terms of the plasmon excitations seems more natural in theave a finite gap, as they do in 3D. For an order of magni-
low-temperature regime where quantum effects are importude estimate, assuminm~10 ?° kg, n~1/50 A2, d
tant. Below, we recall the phonon spectrum of the coupled~10 A, and e~80, we find I17;~10"2% J/ A%, This is
Wigner crystals, identify the plasmon modes, which characclose to the magnitude of the short-ranged force in(Epat
terize the density fluctuations of the system, and compute thgero temperatureHSR(d)~10‘24 J/ A%, and thus may be
attractive force arising from fluctuations using explicitly the just as important under suitable conditions.
Bose-Einstein distribution, which appropriately captures An additional contribution to the pressure at finite tem-
quantum effects at very low temperature and thermal effectgerature arises from the second term in B{),
at higher temperature, for phonons in general and plasmons
in this particular case. AA [

Within the harmonic approximation to the effective Bl (d)=— —wzf dx>8?
Hamiltonian, the dynamical matrix can be diagonalized to 4md™Jo
yield four modes. Two of them are the shear modes of the ‘ 1 .

X

exd nVx(1—e )]—-1 J1—e *

system that do not contribute to the long-ranged fddda.
The dominate modes that lead to the long-ranged attraction
are the two plasmon modes of two-coupled 2D Wigner

crytals, which have the following dispersion relations: B 1 e X
., 8me’n 2mre?n L ex nVx(1+e )]-1 J1+e ™
i) =———A¢(d)+ ——q(l-e"1), (29 (34)
) men ol whereA= \/leezl n/me a}n(_j n=BhA/\/a. We can evaluate
wp(q)=——aq(l+e a9, (30)  this expression in two limits.

In the limit »>1, Eq. (34) can be systematically ex-

where m is the mass of the charges adg(d)~e ©9is  panded in powers of~ 1. The lowest-order term is given by
proportional to the energy gafthe “mass” term for the I r(d)=—ax(kgT/\ d%), where X\ =ag(lg/2\p), ag
out-of-phase mode. The plasmon modes are related to tigeh’/(me”) is the effective Bohr radius, a,
correlated charge-density fluctuations in the two layers. A& (1/4m)[5dx(x? (e*~1)]=¢(3)/(2m), and{ is the Rie-
any finite temperature, the free energy of the low-lying plas-nann zeta function. We observe that the conditiprl is
mon excitations is given by the Bose-Einstein distribution equivalent to the short distance lindt<\, .

In the limit <1 or the large distance limid>\, , we

d?q expand the exponential in the denominator of E2f) to
Fd)/Ag=7 242 f (2—)2wi(q) obtain IT, g(d) = — a(kgT/d%), where a=¢(3)/(8). This
o 7 result agrees with the classical calculation in Sec. Il A as it
d2q should. Therefore, we have the following regimes for corre-
+kgT >, InN[1—e At«i(@] (31) lated attraction from plasmon fluctuations arising finite tem-
i=12J) (2m)? perature contributions
whereA, @s the area of the plane. _Since the_energy gaps —KkgT/d® for A <d
exponentially damped for large distances, its contribution to I, g(d)= ) (35
the free energy may be neglected in the large distance limit, —kgT/(\ d%)  for A >d.

where the long-ranged force is expected to be dominant. . ) )
The first term in Eq(31) arising from the zero-point fluc- W€ note thai , in contrast top, increases with decreas-

tuations leads to an attractive presst6] ing temperature, indicating, as one might expect, that quan-
tum fluctuations are important at low temperatures. Further-

1 aFy(d) 7%e’n a; more, sincell, g(d)—0 asT—0, the attractive interaction
05(d)=— Ay ad =— me g2’ (320 asT—0 is governed by zero-point fluctuations as empha-

sized above. In the strong Coulomb coupling lirit/Ap
~100, we get\,~3 A for e~100 andag~1/20 A. It
should be emphasized that the results in this section are in-
dependent of the nature of the ground state. Thus, any sys-
tem where low-temperature modes of plasmon are important
]_ (33 may, in principle, exhibit the behavior predicted in this sec-
tion. This means that quantum contributions to the long-

where a4 is a positive numerical constant of order unity,
explicitly given by

a1=—1 fdeXS/Ze’X ! —
42mJ)o Jl-e* J1+e7*
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argument leading to Eq28) suggests that if the full cosine
! 7/2 ; ; A ; ;
0.4 ! d“ term is retainedll g may exhibit nonperturbative behaviors
T ;L asé—2".
© s lD To discuss qualitatively what happens at higher tempera-
° 02 d SR tures, we assume thatg(d) is sufficiently small and the
' o system of interacting Wigner crystals is below its melting
\/d1 temperatureT,,. Then, the charges between the two layers
= may unlock via a Kosterlitz-Thoule$KT) type of transition,
00,6 02 04 06 08 10 determined by the relevancy of the cosine ternHn, at
r £=2 [24]. An order of magnitude estimate for the coupling

constant isI'~13. In the locked phas&<2, the periodic
symmetry in?{_ is spontaneously broken, and the resulting
State is well captured by the harmonic approximation. On the
other hand, wheg>2 the fluctuations are so large that the

. . _ground state becomes nondegenefgtplesy i.e., the lay-
ranged attraction are unlikely to be relevant for macroionsgrg gre decoupled. To compdibsr in the unlocked phase,

Our motivation here stems from the desire to understand thﬂ ﬁn given in Eq.(11) can be treated as a perturbation in

charge-fluctuation-induced attraction between coupled layer. aluating the Debye-Waller factor in E@®3). To the low-
in a complete picture. However, our results may have reafgt order. we obtain

impact in a greater field of fluctuation-induced forces in gen-
eral and for electrons in bilayer semiconductor systems in
particular. Indeed, there exist recent theoretical efforts de- kT
voted to this subjedi13]. gg(d)=— "a

FIG. 4. A schematic phase diagram summarizing different
charge-fluctuation-induced attraction regimes. The characteristi
decay lengtH i of the short-ranged force is also shown.

-1
-2

) e 2G0d, (36)

IV. DISCUSSION AND CONCLUSION . . . .
where\p=1/(2mnlg). We first note that this expression di-

In this paper we have studied analytically the electrostatiozerges as— 2", indicating the breakdown of the perturba-
attraction between two planar Wigner crystals in the strondion theory as the temperature is lowered. Furthermore, in
Coulomb coupling limit. We show that the total attractive contrast to Eq(25), the range ofll s remains constant and
pressure can be separated into a long-ranged and shothe amplitude acquires a temperature dependenceTof!
ranged component. The long-ranged pressure arises froffor large £>2), reminiscent of a high-temperature expan-
correlated fluctuationsand the short-ranged pressure from sion[25].
the ground-statéstructural” correlations. We also compute However, the above picture may be modified if the
the very-low-temperature behavior of the fluctuation-inducectharges have melted into a Coulomb fluid via a dislocation-
attraction, where long-wavelength plasmon excitation musimediated melting transitiof23] beforeé— 2. If this is the
be described by Bose-Einstein statistics. The results are surgase, further analysis is necessary to obtain a more complete
marized in Fig. 4, showing different regimes for the charge-picture of the high-temperature phase. Although the spatial
fluctuation-induced long-ranged attraction, including thecorrelations in a system of coupled 2D Coulomb fluids are
short-distance result, which scalesdis' for d<\p in Ref.  expected to be somewhat different from 2D Wigner crystals,
[7] and the characteristic decay lendtgg for the short- the solid phase results above suggest a qualitigiver limit
ranged force. For smadl, the short-ranged force is always of I'~13 at whichIIgg crosses over from low-temperature
dominant, but the decay length shrinks with increasing tembehavior in Eq.(25) to high-temperature behavior in Eq.
perature. The crossover from the short-ranged to long-range@6). It may be of interest to note that in Ré6], an estimate
dominant regimes occurs abadit-a. Thus, for larged>a  for the upper limit of T' at which the Poisson-Boltzmann
only the long-ranged force is operative, which crosses ovegquation breaks down is of the order Iof-3. For divalent
from d~ "/ at zero temperature to the finite-temperature dis-counterions “condensed” onto a highly chargémbposite
tance dependence df 2 if d<\, andd 2 if d>\_. This  plate of surface charge density~e/10 A2 TI'~20 at
provides a unified description to the electrostatic attractiorroom temperature and the counterions are best described as a
between two-coupled Wigner crystals. 2D correlated Coulomb fluid. However, as long as the char-

In addition, our formulation may offer further insights acteristic lateral correlation length is much larger than the
into the nature of the counterion-mediated attraction at shorspacing between the two layers, our elastic approach should
distances. As discussed in Sec. Il B, the reason that the shogapture the qualitative behavior of the short-ranged attrac-
ranged force in Eq(23) does not vanish is because of the tion. A better theory should include the melting of coupled
cosine term inH_ given in Eq.(15), which represents the 2D Wigner crystals by introducing excitations of dislocations
underlying lattice structures, and our results indicate that thinto the effective Hamiltonian Eq(12) similar to what is
strength of the short-ranged force decreases exponentialjone in Ref[26]. These considerations may help to establish
with temperature. However, at higher temperatures the exan analytical theory of the attraction arising from counterion
pression forllgg in Eq. (25) is no longer valid, since the correlations not captured by the Poisson-Boltzmann theory.
harmonic approximation breaks down. Indeed, the scalin@he present formulation is a first step in that direction.
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